Conflicting motion information impairs multiple object tracking
نویسندگان
چکیده
منابع مشابه
Conflicting motion information impairs multiple object tracking.
People can keep track of target objects as they move among identical distractors using only spatiotemporal information. We investigated whether or not participants use motion information during the moment-to-moment tracking of objects by adding motion to the texture of moving objects. The texture either remained static or moved relative to the object's direction of motion, either in the same di...
متن کاملSelf-motion impairs multiple-object tracking.
Investigations of multiple-object tracking aim to further our understanding of how people perform common activities such as driving in traffic. However, tracking tasks in the laboratory have overlooked a crucial component of much real-world object tracking: self-motion. We investigated the hypothesis that keeping track of one's own movement impairs the ability to keep track of other moving obje...
متن کاملMultiple Object Tracking Using Local Motion Patterns
This paper presents an algorithm for multiple-object tracking without using object detection. We concentrate on creating long-term trajectories for unknown moving objects by using a model-free tracking algorithm. Each individual object is tracked by modeling the temporal relationship between sequentially occurring local motion patterns. The algorithm is based on shape and motion descriptors of ...
متن کاملA single unexpected change in target- but not distractor motion impairs multiple object tracking
Recent research addresses the question whether motion information of multiple objects contributes to maintaining a selection of objects across a period of motion. Here, we investigate whether target and/or distractor motion information is used during attentive tracking. We asked participants to track four objects and changed either the motion direction of targets, the motion direction of distra...
متن کاملManifold Learning for Object Tracking with Multiple Motion Dynamics
This paper presents a novel manifold learning approach for high dimensional data, with emphasis on the problem of motion tracking in video sequences. In this problem, the samples are time-ordered, providing additional information that most current methods do not take advantage of. Additionally, most methods assume that the manifold topology admits a single chart, which is overly restrictive. In...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Vision
سال: 2010
ISSN: 1534-7362
DOI: 10.1167/10.4.18